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Intrusion Detetion with Unlabeled Data Using ClusteringLeonid Portnoy, Eleazar Eskin and Sal StolfoDepartment of Computer SieneColumbia UniversityNew York, NY 10027flp178,eeskin,salg�s.olumbia.eduContat Author: Eleazar Eskin (eeskin�s.olumbia.edu)Keywords: intrusion detetion, anomaly detetion, lustering, unlabeled dataAbstratIntrusions pose a serious seurity risk in a network environment. Although systems an be hardenedagainst many types of intrusions, often intrusions are suessful making systems for deteting theseintrusions ritial to the seurity of these system. New intrusion types, of whih detetion systems areunaware, are the most diÆult to detet. Current signature based methods and learning algorithms whihrely on labeled data to train, generally an not detet these new intrusions. In addition, labeled trainingdata in order to train misuse and anomaly detetion systems is typially very expensive. We present anew type of lustering-based intrusion detetion algorithm, unsupervised anomaly detetion, whih trainson unlabeled data in order to detet new intrusions. In our system, no manually or otherwise lassi�eddata is neessary for training. Our method is able to detet many di�erent types of intrusions, whilemaintaining a low false positive rate as veri�ed over the KDD CUP 1999 dataset..1 IntrodutionA network intrusion attak an be any use of a network that ompromises its stability or the seurity ofinformation that is stored on omputers onneted to it. A very wide range of ativity falls under thisde�nition, inluding attempts to destabilize the network as a whole, gain unauthorized aess to �les orprivileges, or simply mishandling and misuse of software. Added seurity measures an not stop all suhattaks. The goal of intrusion detetion is to build a system whih would automatially san network ativityand detet suh intrusion attaks. One an attak is deteted, the system administrator is informed and antake orretive ation.Traditionally, signature based automati detetion methods have been used for this task. These methodsextrat features from the network data, and detet intrusions by omparing the feature values to a setof attak signatures provided by human experts. Obviously, suh methods an not detet new types ofintrusions beause these intrusions do have have a orresponding signature. The signature database has tobe manually revised for eah new type of attak that is disovered. Other approahes use data mining andmahine learning algorithms to train on labeled (i.e. with instanes prelassi�ed as being an attak or not)network data. These approahes the generalization ability of data mining methods in order to attempt todetet new attaks.There are two major paradigms for training data mining-based intrusion detetion systems: misusedetetion and anomaly detetion. In misuse detetion approahes, eah instane in a set of data is labeledas normal or intrusion and a mahine learning algorithm is trained over the labeled data. An example of adata mining-based misuse detetion system is the MADAM/ID system [19℄, whih extrated features from1
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network onnetions and built detetion models over onnetion reords that represented a summary of thetraÆ from a given network onnetion. These detetion models are generalized rules that lassify the datausing the extrated features. These approahes have the advantage of being able to automatially retrainintrusion detetion models on di�erent input data that inlude new types of attaks. We would have toinsert many labeled instanes of these new attaks into the dataset, and the method would readjust its rulesets to detet them.Anomaly detetion approahes build models of normal data and then attempts to detet deviations fromthe normal model in observed data. Anomaly detetion algorithms have the advantage that they an detetnew types of intrusions, beause these new intrusions, by assumption, will deviate from normal networkusage [5, 13℄. Traditional anomaly detetion algorithms require a set of purely normal data from whih theytrain their model. If the data ontains some intrusions buried within the training data, the algorithm maynot detet future instanes of these attaks beause it will assume that they are normal.However, more often than not, we do not have either labeled or purely normal data readily available.Generally, we must deal with very large volumes of network data, and thus it is diÆult and tiresome tolassify it manually. We an obtain labeled data by simulating intrusions, but then we would be limited tothe set of known attaks that we were able to simulate and new types of attaks ourring in the future willnot be reeted in the training data. Even with manual lassi�ation, we are still limited to identifying onlythe known (at lassi�ation time) types of attaks, thus restriting our detetion system to identifying onlythose types. Generating purely normal data is also very diÆult in pratie. If we ollet raw data from anetwork environment, it is very hard to guarantee that there are no attaks during the time we are olletingthe data.In this paper, we present a new type of intrusion detetion algorithm, unsupervised anomaly detetion(also known as anomaly detetion over noisy data [6℄), to address these problems. This algorithm takes asinputs a set of unlabeled data and attempts to �nd intrusions buried within the data. After these intrusionsare deteted, we an apply train a misuse detetion algorithm or a traditional anomaly detetion algorithmover the data.Unsupervised anomaly detetion algorithms make two assumptions about the data whih motivate thegeneral approah. The �rst assumption is that the number of normal instanes vastly outnumbers the numberof intrusions. The seond assumption is that the intrusions themselves are qualitatively di�erent from thenormal instanes. The basi idea is that sine the intrusions are both di�erent from normal and rare, theywill appear as outliers in the data whih an be deteted. Despite these inherent limitations, unsupervisedanomaly detetion algorithms have the major advantage of being able to proess unlabeled data and detetsome of the intrusions. In addition, these types of algorithms are useful for semi-automated detetion inhelping analysts fous on suspiious instanes.A previous approah to unsupervised anomaly detetion involves building probabilisti models from thetraining data and then using them to determine whether a given network data instane is an anomaly or not[6℄. In that approah, the data was modeled using a probabilisti model that was known to perform well forthat kind of data. In our urrent work, we drop the requirement of a probabilisti model and instead useinter-point distanes to motivate our algorithm.The approah we used and desribe below, lusters the data instanes together into lusters using asimple distane-based metri. This lustering is performed on unlabeled data, requiring only feature vetorswithout labels to be presented. One the data is lustered, we label as anomalies all of the instanes thatappear in small lusters. The reason that this method works an be explained using the assumptions thatwe made about the data for unsupervised anomaly detetion. Under the �rst assumption, the number ofnormal instanes vastly outnumber the number of intrusion instanes. This implies that the normal instanesshould form large lusters ompared to the intrusions. Under the seond assumption, sine the intrusionsand normal instanes are qualitatively di�erent, they will not fall into the same lusters.Unsupervised anomaly detetion algorithms are limited to being able to detet attaks only when theassumptions hold over that data whih is not always the ase. For example, these algorithms will not be able2
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to detet the maliious intent of someone who is authorized to use the network and who uses it in a seeminglylegitimate way. The reason is that this intrusion is not qualitatively di�erent from normal instanes of theuser. Our algorithm may luster these instanes together and the intrusion would be undetetable. Anotherexample is that the algorithm will have a diÆulty deteting a syn-ood DoS attak. The reason is thatoften under suh an attak there are so many instanes of the intrusion that it ours in a similar number tonormal instanes. Our algorithm may not label these instanes as an attak beause the size of the lustermay be as large as typial lusters of normal instanes.We evaluated our luster-based unsupervised anomaly detetion method over real network data. Both thetraining and testing was done using (di�erent subsets of) KDD CUP 99 data [14℄, whih is a very popularand widely used intrusion attak dataset. Various ombinations of subsets of this dataset were used fortraining and testing, using standard ross validation tehniques, eah ombination yielding slightly di�erentresults. On average, the detetion rate was around 40%-55% with a 1.3%-2.3% false positive rate. Giventhe advantages of our method over traditional approahes, that the data was unlabeled, and our methoduses almost no domain knowledge about seurity, these results indiate that this approah to unsupervisedanomaly detetion is promising.1.1 Related workClustering is a well known and studied problem. It has been studied in many �elds inluding statistis [24℄,mahine learning [23℄, databases [11℄, and visualization. Basi methods for lustering inlude the Linkagebased [3℄ and K-means [8℄ tehniques. K-means makes several passes through the training data and on eahpass shifts luster enters to the mean of the data points assigned to that luster. It then re-assigns datapoints to the nearest prototype, and ontinues iterating in this manner until no signi�ant hanges in lusterenter positions our. The K-means method generally produes a more aurate lustering than linkagebased methods, but it has a greater time omplexity and this beomes an extremely important fator innetwork intrusion detetion due to very large dataset sizes. Although some optimizations of K-means forvery large datasets exist , they still do not perform suÆiently fast for datasets with high dimensionality.Some other tehniques for lustering inlude Clarans [20℄, Birh[26℄, density based methods suh as Dbsan[7℄, and AI methods like Self-Organizing Maps [23℄and Growing Networks [1℄.Anomaly detetion is a widely used method in the �eld of omputer seurity, and there are approahesthat utilize it for deteting intrusions [5℄. Various tehniques for modeling anomalous and normal datahave been developed for intrusion detetion. A survey of these tehniques is given in [25℄. An approahfor modeling normal sequenes using look ahead pairs and ontiguous sequenes is presented in [12℄, anda statistial method to determine sequenes whih our more frequently in intrusion data as opposed tonormal data is presented in [10℄. One approah use a predition model obtained by training deision treesover normal data [18℄, while another one uses neural networks to obtain the model [9℄. Lane and Brodley[17℄ evaluated unlabeled data for anomaly detetion by looking at user pro�les and omparing the ativityduring an intrusion to the ativity during normal use. A tehnique developed at SRI in the Emerald system[13℄ uses historial reords as its normal training data. It then ompares distributions of new data to thedistributions obtained from those historial reords and di�erenes between the distributions indiate anintrusion. The problem with this approah, however, is that if the historial distributions ontain intrusions,the system may not be able to detet similar intrusions in the new instanes.Another algorithm for unsupervised anomaly detetion is presented in [6℄. In this algorithm, a mixturemodel for explaining the presene of anomalies is presented, and mahine learning tehniques are used toestimate the probability distributions of the mixture to detet the anomalies. There is reent work in distanebased outliers that is similar to our approah [15, 16, 4℄. These approahes examine inter-point distanesbetween instanes in the data to determine whih points are outliers. A di�erene between these approahesand the problem of unsupervised anomaly detetion is that the nature of the outliers are di�erent. Often innetwork data, the same intrusion ours multiple times whih means there are many similar instanes in the3
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data. However, the number of instanes of this intrusion is signi�antly smaller than the typial luster ofnormal instanes.A problem related to anomaly detetion is the study of outliers in the �eld of statistis. Various tehniqueshave been developed for deteting outliers in univariate, multivariate and strutured data, using a givenprobability distribution. A survey of outliers in statistis is given by [2℄.2 MethodologyIn this setion we desribe the dataset and how it is used to build lusters and detet intrusions. We �rstexamine what type of data was present in the dataset, what features were extrated, and what intrusiontypes were represented. Then, we disuss how the data was normalized based on the standard deviationof the training set, so that the system would be able to reate lusters with data oming from di�erentdistributions. A desription of the metri and the lustering algorithm follows, and �nally the methods forlabeling lusters and lassifying unseen instanes are disussed.2.1 Dataset DesriptionThe dataset used was the KDD Cup 1999 Data [14℄, whih ontained a wide variety of intrusions simulatedin a military network environment. It onsisted of approximately 4,900,000 data instanes, eah of whih isa vetor of extrated feature values from a onnetion reord obtained from the raw network data gatheredduring the simulated intrusions. A onnetion is a sequene of TCP pakets to and from some IP addresses.The TCP pakers were assembled into onnetion reords using the Bro program [21℄ modi�ed for use withMADAM/ID [19℄. Eah onnetion was labeled as either normal or as exatly one spei� kind of attak.All labels are assumed to be orret.The simulated attaks fell in one of the following four ategories : DOS - Denial of Servie (e.g. a synood), R2L - Unauthorized aess from a remote mahine (e.g. password guessing), U2R - unauthorizedaess to superuser or root funtions (e.g. a bu�er overow attak), and Probing - surveillane and otherprobing for vulnerabilities (e.g. port sanning). There were a total of 24 attak types.The extrated features inluded the basi features of an individual TCP onnetion suh as its duration,protool type, number of bytes transferred, and the ag indiating the normal or error status of the onne-tion. Other features of an individual onnetion were obtained using some domain knowledge, and inludedthe number of �le reation operations, number of failed login attempts, whether root shell was obtained, andothers. Finally, there were a number of features omputed using a two-seond time window. These inluded- the number of onnetions to the same host as the urrent onnetion within the past two seonds, perentof onnetions that have "SYN" and "REJ" errors, and the number of onnetions to the same servie as theurrent onnetion within the past two seonds. In total, there were 41 features, with most of them takingon ontinuous values.2.2 NormalizationSine our algorithm is designed to be general, it must be able to reate lusters given a dataset from anarbitrary distribution. A problem with typial data is that di�erent features are on di�erent sales. Thisauses bias toward some features over other features.As an example, onsider two 3-feature vetors, eah set oming from di�erent distributions : f(1; 3000; 2); (1; 4000; 3)g.Under an Eulidean metri, the squared distane between feature vetors will be (1� 1)2+(3000� 4000)2+(2� 3)2 whih is dominated by the seond olumn.To solve this problem, we onvert the data instanes to a standard form based on the training dataset'sdistribution. That is, we make the assumption that the training dataset aurately reets the range and4
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deviation of feature values of the entire distribution. Then, we an normalize all data instanes to a �xedrange of our hoosing, and hard ode the luster width based on this �xed range.Given a training dataset, the average and standard deviation feature vetors are alulated :avg vetor[j℄ = 1N NXi=1 instanei[j℄std vetor[j℄ = ( 1N � 1 NXi=1(instanei[j℄� avg vetor[j℄)2)1=2where vetor[j℄ is the jth element (feature) of the vetor.Then eah instane (feature vetor) in the training set is onverted as follows :new instane[j℄ = instane[j℄� avg vetor[j℄std vetor[j℄In other words, for every feature value we alulate how many standard deviations it is away from theaverage, and that result beomes the new value for that feature. Only ontinuous features were onverted;symboli ones were preserved as they were.In e�et this is a transformation of an instane from its own spae to our standardized spae, based onstatistial information retrieved from the training set.2.3 MetriOne of the main assumptions made was that data instanes having the same label will tend to be losertogether than instanes with di�erent labels under some metri. Therefore, �nding or onstruting anappropriate metri is ritial to the performane of the method.The partiular hoie of metri is likely to be ditated by the domain. In deteting network intrusions,it seemed at �rst that some features of the data instanes would be important (have greater weight) thanothers, and thus di�erenes in the values of those features should have a greater ontribution to the overalldistane. Therefore, we experimented with several weighted metris, with higher weights assigned to di�erentsubsets of features.However, in the end we used a standard Eulidean metri, with equally weighted features. One reasonfor this was that while the weighted metri did show some inrease in performane, it was not a signi�antamount. But more importantly, tuning the metri's parameters to ahieve maximum performane for apartiular domain, data distribution, and feature set would undermine the system's generality and wouldontribute to over �tting.Some features took on disrete values, and so there was an issue of how to fator them into the metri.The metri we used added a onstant value to the squared distane between two instanes for every disretefeature where they had two distint values. This is equivalent to treating eah di�erent value as beingorthologous in the feature spae.2.4 ClusteringTo reate lusters from the input data instanes, we used a simple variant of single-linkage lustering.Although this is not the most e�etive lustering algorithm, it has the advantage of working in near lineartime. The algorithm starts with an empty set of lusters, and generates the lusters with a single passthrough the dataset. For eah new data instane retrieved from the normalized training set, it omputesthe distane between it and eah of the entroids of the lusters in the luster set so far. The luster withthe shortest distane is seleted, and if that distane is less than some onstant W (luster width) then the5
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instane is assigned to that luster. Otherwise, a new luster is reated with the instane as its enter. Moreformally, the algorithm proeeds as follows :Assume we have �xed a metri M, and a onstant luster width W. Let dist(C; d) where C is a lusterand d is an instane, be the distane under the metri M , between C's de�ning instane and d. The de�ninginstane of a luster is the feature vetor that de�nes the enter (in feature spae) of that luster. We referto this de�ning instane as the entroid.1. Initialize the set of lusters, S, to the empty set.2. Obtain a data instane (feature vetor) d from the training set. If S is empty, then reate a lusterwith d as the de�ning instane, and add it to S. Otherwise, �nd the luster in S that is losest to thisinstane. In other words, �nd a luster C in S, suh that for all C1 in S, dist(C; d) <= dist(C1; d).3. If dist(C; d) <=W , then assoiate d with the luster C. Otherwise, d is more than W away from anyluster in S, and so a new luster must be reated for it : S  S [ fCng where Cn is a luster withd as its de�ning instane.4. Repeat steps 2 and 3, until no instanes are left in the training set.2.5 Labeling lustersOur hope is that under our metri, instanes with the same lassi�ation are lose together and those withdi�erent lassi�ations are far apart. If an appropriate luster width W was hosen, then after lusteringwe obtain a set of lusters with instanes of a single type in eah of them. This orresponds to our seondassumption about the data that the normal and intrusion instanes are qualitatively di�erent.Sine we are dealing with unlabeled data, we do not have aess to labels during training. Therefore,it is neessary to �nd some other way to determine whih lusters ontain normal instanes and whihontain attaks (anomalies). Our �rst assumption about the data is that normal instanes onstitute anoverwhelmingly large portion (> 98%) of the training dataset. Under this assumption it is highly probablethat lusters ontaining normal data will have a muh larger number of instanes assoiated with themthen would lusters ontaining anomalies. We therefore label some perentage N of the lusters ontainingthe largest number of instanes assoiated with them as 'normal'. The rest of the lusters are labeled as'anomalous' and are onsidered to ontain attaks.A problem may arise with this approah, however, depending on how many sub-types of normal instanesthere are in the training set. For example, there may be many di�erent kinds of normal network ativity,suh as using di�erent protools - ftp, telnet, www, et. Eah of these uses might have its own distint pointin feature spae where network data instanes for that use will tend to luster around. This, in turn, mightprodue a large number of suh 'normal' lusters, one for eah type of normal use of the network. Eahof these lusters will then have a relatively small number of instanes assoiated with it - less than somelusters ontaining attak instanes. Then these normal lusters will be inorretly labeled as anomalous.To prevent this problem, we need to insure that the perentage of normal instanes in the training set isindeed extremely large in relation to attaks. Then, it is very likely that eah type of normal network usewill have adequate (and larger) representation than eah type or sub-type of attak.2.6 DetetionOne the lusters are reated from a training set, the system is ready to perform detetion of intrusions.Given an instane d, lassi�ation proeeds as follows :1. Convert d based on the statistial information of the training set from whih the lusters were reated.Let d0 be the instane after onversion. 6
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2. Find a luster whih is losest to d0 under the metri M (i.e. a luster C in the luster set, suh thatfor all C 0 in S, dist(C; d0) <= dist(C 0; d0).3. Classify d0 aording to the label of C (either normal or anomalous).In other words, we simply �nd the luster that is losest to d (onverted) and give it that luster'slassi�ation.3 System evaluation and results3.1 Performane measuresTo evaluate our system we were interested in two major indiators of performane : the detetion rate andthe false positive rate. The detetion rate is de�ned as the number of intrusion instanes deteted by thesystem divided by the total number of intrusion instanes present in the test set. The false positive rate isde�ned as the total number of normal instanes that were (inorretly) lassi�ed as intrusions divided bythe total number of normal instanes. These are good indiators of performane, sine they measure whatperentage of intrusions the system is able to detet and how many inorret lassi�ations it makes in theproess. We alulate these values over the labeled data to measure performane.3.2 Filtering the training datasetThe KDD dataset was obtained by simulating a large number of di�erent types of attaks, with normalativity in the bakground. The goal was to produe a good training set for learning methods that uselabeled data. As a result, the proportion of attak instanes to normal ones in the KDD training dataset isvery large as ompared to data that we would expet to observe in pratie.Our seond major assumption, however, states that the training set should represent normal networkativity, where attaks are very rare and most of the data represents normal operation. Therefore, the rawKDD dataset obviously does not satisfy this ondition. We trained the system with this raw set and obtainedvery poor performane, as was to be expeted. To meet the requirement, we generated training sets fromKDD data by �ltering it for attaks. It was �ltered suh that the resulting training set onsisted of 1 to1.5% attak and 98.5 to 99% normal instanes.3.3 Parameter EstimationThere were two main parameters whose values needed to be �xed before performane ould be measured.The �rst one is the luster width for doing lustering, whih determines how lose two instanes have to beto be assigned to the same luster. The seond is the perentage of the largest lusters N that would belabeled 'normal' during the detetion phase. The goal was to set values for these two variables suh that theperformane over the entire domain would be maximized.In this setion we report results over the same dataset to give intuitions of how the dynamis of theparameters behave. In the following setion we present results of testing over separate data sets to give amore aurate measure of the performane. We used a single subset (around 10%) of the KDD data to runa series of tests with di�erent values for these two variables, measuring the resulting performane. A hazardis that the training set might represent a narrow spetrum of the domain and we might over �t the valuesof the two variables to that spetrum. However, the subset that we hose was representative of the entireKDD dataset, as it ontained many instanes of eah type of attak.One we found the values for luster width and the N that maximized results for that set, those valueswere �xed for all the subsequent experiments over di�erent datasets. The two parameters are set to omparethe best values over this type of data. Cluster width is a measure indiating the average radius in feature7
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Width N Detetion rate False positive rate20 15% 35.7% 1.44%20 7% 66.2% 2.7%20 2% 88.% 8.14%Table 1: These are the results of some tests to obtain the value of N (perentage of largest lusters to labelas normal during detetion). The luster width was �xed for these tests.Width N Detetion rate False positive rate30 15% 28.1% 1.07%40 15% 30.77% 0.84%60 15% 31.9.% 0.7%80 15% 22.84% 0.6%Table 2: These are the results of some tests to obtain the value of the luster width variable. Cluster widthof 40 was hosen for subsequent tests.spae of a luster ontaining instanes of the same type. This is a partiular property of the domain -network onnetion reords. The N is also a property of the network - it attempts to measure the ratio ofthe number of sub-types of normal instanes to the total number of di�erent sub-types.When �xing the values of the luster width and perentage of largest lusters variables, and measuringperformane on the single training/test set, the results are shown in Table 3.3.We deided to use 15% as the value for N in subsequent tests, sine it produed an aeptable falsepositive rate, without sari�ing too muh detetion rate. To �nd the value for luster width we ondutedseveral tests on the same training/test set ombination, and with a �xed value for N The results of some ofthese tests are shown in Table 2.Cluster width of 40 was hosen even though width=60 produed a slightly higher detetion rate and afalse positive rate. The di�erene was minor however, and tests on di�erent datasets indiated that withwidth=60 performane was worse than with width=40.Figure 1 shows an ROC (Reeiver Operating Charateristi) [22℄ urve depiting the relationship betweenfalse positive and detetion rates for one �xed training/test set ombination. ROC urves are a way ofvisualizing the trade-o�s between detetion and false positive rates.

Figure 1. The ROC urve of false positive vs. detetion rate, for a �xed training and test set ombination.
8
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3.4 Cross validation testingFinally, after all parameters were spei�ed, we evaluated the system by using a variant of the ross validationmethod. Cross validation is the standard tehnique used to obtain an estimation of a method's performaneover unseen data.We partitioned the entire KDD dataset into ten subsets, eah ontaining approximately490,000 instanes or 10% of the data. Unfortunately, the distribution of the attaks in the KDD dataset isvery uneven whih made ross validation very diÆult. Many of these subsets ontained instanes of only asingle type. For example, the 4th, 5th, 6th, and 7th 10% portions of the full dataset ontained only SMURFattaks, and the data instanes in the 8th were almost entirely NEPTUNE intrusions. Sine we require thatall intrusion (and normal) sub-types should be represented at least to some degree in the training dataset,we did not use these subsets beause they failed to meet this requirement. For ross validation training onlyfour of the ten subsets were seleted. These four subsets ontained a good mix of various intrusion types,and onformed to our neessary assumptions about the data. They were likely to produe a lustering thatwould be representative of many intrusions.Eah of these four subsets was then seleted, and �ltered suh that the intrusion would onstitute 1%of the resulting dataset. The system was trained on this �ltered data, and the luster set that resulted wassaved. We then evaluated system performane of this luster set over eah of these four subsets, this timeused as test sets. This proess was repeated several times, with a di�erent subset seleted for training eahtime. The results are shown in Table 3.5.The test sets were also �ltered to ontain approximately equal number of instanes of eah type ofattak. This was neessary in order to have a meaningful measure of performane, sine for example if 80%of intrusions in the test set were of a single type, then a detetion rate of 81% would indiate that the systemis well suited for deteting only this partiular type of attak. If, however, the test sets ontain an equalperentage of di�erent types of instanes, then an 81% detetion rate would show the system as apable ofdeteting several di�erent types of intrusions.3.5 Variations to lustering and detetionIn addition to the experiments with the luster width and the onstant indiating the perent of largestlusters to be labeled normal, we explored some variations to the lustering and detetion methods, and theevaluated the performane over the single training and test sets.The lustering method was altered by allowing multiple (two in the version we used) passes for thereation and assignment of instanes to lusters. Previously, only one pass was made, during whih for everyinstane a luster nearest to it was found in the set of urrently existing lusters, and the instane wasassigned to that luster if it was less than luster width away (under the metri). If it was farther away, anew luster was reated for that instane. In this sheme the instanes whih appeared earlier in the trainingdataset had a smaller set of existing lusters to ompare distane to. It was thought that this might havepossibly resulted in a non-optimal assignment of an instane to a luster, in the sense that if it was losestto some type or sub-type of instanes and the luster representing them was not yet present in the set, itwould have been assigned (if it was within luster width) to the losest luster that was in the set at the timethat instane was onsidered. That luster would be a non-optimal hoie, as it might represent a di�erenttype or sub-type than that of the instane whih was assigned to it. To prevent this from ourring, weimplemented a double pass method where we would �rst only reate the lusters without assigning instanesto them, and then during a seond pass through the training set assign instanes based on the losest lusterin this omplete set.The performane of the system with this hange is shown in Table 3.5. Another variation was hangingthe lustering method. The performane obtained from hanging the lustering method to use two passeswas the same or worse than the performane of lustering with one pass.The seond variation was applied to the detetion method, where instead of hoosing the losest lusterto the presented instane and assigning it that luster's lassi�ation (either normal or anomalous), we hose9
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Training set Test set Detetion rate False positive rateP10 P1 55.7% .99%P10 P2 51.04% 1.58%P10 P3 53.01% 1.67%P10 P10 53.39% 1.04%P2 P1 46.3% .46%P2 P2 22.0% .70%P2 P3 29.3% 2.35%P2 P10 23.0% 9.83%P1 P1 28.3% 4.5%P1 P2 50.5% 1.26%P1 P3 38.5% 3.45%P1 P10 50.4% 11.37%P3 P1 56.25% .3%P3 P2 18.56% .6%P3 P3 18.75% .74%P3 P10 23.0% 1.31%Table 3: Performane of the system under various training and test set ombinations. P1, P2, P3, andP10 represent the �rst, seond, third, and the tenth 10% partitions of the 4,000,000 KDD CUP 99 dataset,respetively. Cluster width was set to 40, and 20% of largest lusters were marked as normal. Both thetraining and test sets were �ltered prior to their use. The training was done over only 10% of the total datasine there was enough data in this subset to for good lusters.
N Detetion rate False positive rate2 28.5% .56%3 51.3% 1.21%4 47.2% .93%5 53.3% 1.61%6 50.9% 1.36%7 65.7% 1.78%Table 4: Results for the labeling by majority variation to the detetion method.
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N losest lusters to that instane and assigned it the majority's lassi�ation (i.e. if a larger number ofthose N lusters were labeled anomalous then the instane was lassi�ed orrespondingly, and as normalotherwise).After experimenting with these hanges and evaluating their performane on a test set as desribedbelow, we onluded that they did not improve detetion auray and in some ases dereased the detetionauray.4 AnalysisThe results from ross validation show that performane of our system depends heavily on whih trainingset was used. In fat, it depends on how well the training set meets the requirement of representing a widevariety of intrusion and normal sub-types. As Table 4 shows, training on sets P2 or P1 resulted in a veryhigh false positive rate ompared to the other sets. A loser examination of those datasets revealed thatthey ontained a smaller number of di�erent normal sub-types than the other two sets. This resulted in thefailure to reate lusters for many normal regions of the feature spae, and therefore data instanes fromthose regions were assigned to inorret lusters, possibly to those marked as anomalous. This may haveaused the high false positive rate.The training set P10 showed the best performane aross all four of the test sets, with a high detetionand a low false positive rate. When training on P10 and testing on the P3 sets, 53.01% detetion and 1.67%false positive rates were obtained. On the other hand, when we reversed the situation by training on P3 andtesting on P10, only a 23% detetion rate was obtained (with a similar false positive rate). This an againbe explained by the fat that in the P10 dataset more di�erent types of intrusions were represented than inthe P3 set, and therefore training on P10 resulted in a better luster set than training on P3, whih in turnmanifested itself in the inreased detetion rate.In an atual appliation of the system, the expeted performane greatly depends on the omposition ofthe data as shown with the variability of the detetion rate over the di�erent subsets. However, in all ofthese datasets, we have a signi�ant detetion rate with a low false positive whih suggests that the methodwill be able to detet some of the attaks suessfully.4.1 Detetion vs. false positive ratesThe trade-o� between the false positive and detetion rates is inherently present in many mahine learningmethods. By omparing these quantities against eah other we an evaluate the performane invariant ofthe bias in the distribution of labels in the data. This is espeially important in intrusion detetion problemsbeause the normal data outnumbers the intrusion data by a fator of 100 : 1. The lassial auray measureis misleading beause a system that always lassi�es all data as normal would have a 99% auray.In our system, the false positive vs. detetion rate trade-o� was very apparent. As the perent of largestlusters to be labeled normal was dereased, detetion rate inreased substantially sine a larger number oflusters were now labeled anomalous. The intrusion instanes whih were assigned to those lusters but werepreviously lassi�ed as normal (beause those lusters were labeled normal), now were lassi�ed orretly asintrusions. However, at the same time the false positive rate also inreased beause all the normal instanesassigned to lusters that were previously labeled normal and that now were labeled anomalous, were lassi�edas intrusions as well. If those lusters indeed represented anomalous regions in the feature spae, then thosenormal instanes were assigned to them inorretly, perhaps due to an sub-optimal metri or beause theassumption that instanes of the same type or sub-type will luster together was not satis�ed. However,the negative e�et of this mis-assignment on performane ould have been avoided if the perent of largestlusters to be labeled normal was not dereased.To suessfully utilize the system, then, a suitable value for that perentage must be found, one that wouldyield a high detetion rate while keeping the false positive rate within a tolerable low value. If we assume11
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that no mis-assignment of instanes to lusters ours, then this essentially amounts to measuring a propertyof the domain - the ratio of the number of sub-types of normal instanes to the total number of di�erentsub-types. This ratio will be reeted in the number of lusters representing normal regions of the featurespae relative to the number of lusters representing all regions. In reality, when our assumptions are notmet and mis-assignment our, that ratio an be estimated indiretly, by noting the value for the perentageof largest lusters to be labeled normal whih makes the false positive and detetion rate ombination mostfavorable. For example, we ould hoose a value whih minimizes their sum (possibly weighted).4.2 Variations to the AlgorithmsIt was onluded that the hanges made to the lustering algorithm and to the detetion method did notinrease performane for several reasons. Changing the detetion method to perform lassi�ation based onthe majority of k nearest lusters' labels showed improved results for the single training and test set thatwere used to measure performane. The detetion rate was generally higher for values of k > 1 than when kwas equal to 1, while still keeping the false positive rate relatively low. However, the results varied greatlywith k, with no apparent pattern as k inreased. This lead us to suspet that the value of k whih produedthe best results was related to the partiular training/test set that was used, and that it did not represent avalue that inreased performane over the entire domain. In other words, the number (k) of nearest lustersto be onsidered that yielded the best results, was in reality dependent on the training/test set ombinationand the portion of the domain it represented. Using this value for training on di�erent sets might givedi�erent, less favorable, results. This suspiion of over �tting to the single training/test set was on�rmedwhen we tested the labeling by majority method on other training and test set ombinations. Results forthose tests indiated that the method did not improve, and in some ases lowered, the performane.The idea of hanging lustering to use the double pass method was disarded immediately, after theresults with that variation used were obtained. They showed that detetion rate was about the same withfalse positive rate remaining the same or even slightly higher when using the double pass method thanwithout using it. One possible explanation for the inreased false positive rate is that with the double passmethod less instanes were being assigned to eah luster on average (beause instanes were now moreevenly distributed aross lusters). This ould have led to the inability to di�erentiate between anomalousand normal lusters during the detetion phase, sine due to the more even distribution some truly normallusters now had less instanes assigned to them than previously. Therefore they might have been labeledas anomalous, and this inreased the false positive rate.5 ConlusionThe ontribution that we presented in this paper was a method for deteting intrusions based on featurevetors olleted from the network, without being given any information about lassi�ations of these vetors.We designed a system that implemented this method, and it was able to detet a large number of intrusionswhile keeping the false positive rate reasonably low. There are two primary advantages of this system oversignature based lassi�ers or learning algorithms that require labeled data in their training sets. The �rstis that no manual lassi�ation of training data needs to be done. The seond is that we do not have to beaware of new types of intrusions in order for the system to be able to detet them. All that is required isthat the data onform to several assumptions. The system then will try to automatially determine whihdata instanes fall into the normal lass and whih ones are intrusions.Even though the detetion rate of the system we implemented is not as high as of those using algorithmsrelying on labeled data, our system is still very useful. Sine no prior lassi�ation is required on the trainingdata, and no knowledge is needed about new attaks, we an automate the proess of training and reatingnew luster sets. In pratie, this would mean periodially (every 2 weeks for example) olleting raw datafrom the network, extrating feature values from it, and training on the resulting set of feature vetors. This12
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will help detet new and yet unknown attaks. In addition, the method an be used for semi-automateddetetion by helping analysts fous on portions of the data that are more likely to ontain intrusions.5.1 Future workFuture work involves possible extensions or modi�ations to our method to ahieve better performane and abetter degree of automation. Currently, during detetion lusters are labeled as either anomalous or normalaording to the relative number of instanes they ontain. Another possibility would be to label lusterswhih are outliers in the feature spae as anomalous, and all others as normal. This involves making theassumption that normal data of di�erent sub-types will be lustered together, while sub-types of intrusiondata will not be near the normal region of feature spae.To ahieve a greater degree of automation, we an also determine the value for the perentage of largestlusters labeled normal N variable automatially, perhaps based on the standard deviation and averagevalues of the number of instanes in lusters. In that sheme, lusters ontaining only a 'small' (some �xedstandard deviations lower than the mean) number of instanes will be labeled anomalous. The advantageto this method is that in the urrent system as more new and unknown attaks are introdued into thenetwork environment, the ratio of the number of normal sub-types to the total number of sub-types willderease. Having a �xed value for N whih does not reet the dereased ratio will therefore ause thealgorithm to label more lusters as normal, some of whih should have really been labeled as anomalous.As a result, detetion rate will derease as more new intrusion types are introdued, and therefore periodimanual updates of the value for N will be required. If the system determines the value for N automatially,however, then no manual intervention will be required even over long periods of time.Referenes[1℄ D. Touretzky B. Fritzke and T. Leen. A growing neural gas network learns topologies. Advanes inNeural Information Proessing Systems, 7:625{632, 1995.[2℄ V. Barnett and T. Lewis. Outliers in Statistial Data. John Wiley and Sons, 1994.[3℄ H.H. Bok. Automati Classi�ation. Vandenhoek and Rupreht, 1974.[4℄ Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. LOF: identifying density-based loal outliers. In ACM SIGMOD Int. Conf. on Management of Data, pages 93{104, 2000.[5℄ D.E. Denning. An intrusion detetion model. IEEE Transations on Software Engineering, SE-13:222{232, 1987.[6℄ E. Eskin. Anomaly detetion over noisy data using learned probability distributions. In Proeedings ofthe International Conferene on Mahine Learning, 2000.[7℄ M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for disovering lusters inlarge spatial databases with noise. In Proeedings of the 2nd International Conferene on KnowledgeDisovery and Data Mining, pages 226{231, 1996.[8℄ K. Fukunaga. Introdution to Statistial Pattern Reognition, Seond Edition. Aademi Press, Boston,MA, 1990.[9℄ A. Ghosh and A. Shwartzbard. A study in using neural networks for anomaly and misuse detetion.In Proeedings of the 8th USENIX Seurity Symposium, 1999.[10℄ P. Helman and J. Bhangoo. A stiatistially base system for prioritizing information exploration underunertainty. IEEE Transations on Systems, Man and Cybernetis, Part A: Systems and Humans,27(4):449{466, 1997. 13
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