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tIntrusions pose a serious se
urity risk in a network environment. Although systems 
an be hardenedagainst many types of intrusions, often intrusions are su

essful making systems for dete
ting theseintrusions 
riti
al to the se
urity of these system. New intrusion types, of whi
h dete
tion systems areunaware, are the most diÆ
ult to dete
t. Current signature based methods and learning algorithms whi
hrely on labeled data to train, generally 
an not dete
t these new intrusions. In addition, labeled trainingdata in order to train misuse and anomaly dete
tion systems is typi
ally very expensive. We present anew type of 
lustering-based intrusion dete
tion algorithm, unsupervised anomaly dete
tion, whi
h trainson unlabeled data in order to dete
t new intrusions. In our system, no manually or otherwise 
lassi�eddata is ne
essary for training. Our method is able to dete
t many di�erent types of intrusions, whilemaintaining a low false positive rate as veri�ed over the KDD CUP 1999 dataset..1 Introdu
tionA network intrusion atta
k 
an be any use of a network that 
ompromises its stability or the se
urity ofinformation that is stored on 
omputers 
onne
ted to it. A very wide range of a
tivity falls under thisde�nition, in
luding attempts to destabilize the network as a whole, gain unauthorized a

ess to �les orprivileges, or simply mishandling and misuse of software. Added se
urity measures 
an not stop all su
hatta
ks. The goal of intrusion dete
tion is to build a system whi
h would automati
ally s
an network a
tivityand dete
t su
h intrusion atta
ks. On
e an atta
k is dete
ted, the system administrator is informed and 
antake 
orre
tive a
tion.Traditionally, signature based automati
 dete
tion methods have been used for this task. These methodsextra
t features from the network data, and dete
t intrusions by 
omparing the feature values to a setof atta
k signatures provided by human experts. Obviously, su
h methods 
an not dete
t new types ofintrusions be
ause these intrusions do have have a 
orresponding signature. The signature database has tobe manually revised for ea
h new type of atta
k that is dis
overed. Other approa
hes use data mining andma
hine learning algorithms to train on labeled (i.e. with instan
es pre
lassi�ed as being an atta
k or not)network data. These approa
hes the generalization ability of data mining methods in order to attempt todete
t new atta
ks.There are two major paradigms for training data mining-based intrusion dete
tion systems: misusedete
tion and anomaly dete
tion. In misuse dete
tion approa
hes, ea
h instan
e in a set of data is labeledas normal or intrusion and a ma
hine learning algorithm is trained over the labeled data. An example of adata mining-based misuse dete
tion system is the MADAM/ID system [19℄, whi
h extra
ted features from1
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network 
onne
tions and built dete
tion models over 
onne
tion re
ords that represented a summary of thetraÆ
 from a given network 
onne
tion. These dete
tion models are generalized rules that 
lassify the datausing the extra
ted features. These approa
hes have the advantage of being able to automati
ally retrainintrusion dete
tion models on di�erent input data that in
lude new types of atta
ks. We would have toinsert many labeled instan
es of these new atta
ks into the dataset, and the method would readjust its rulesets to dete
t them.Anomaly dete
tion approa
hes build models of normal data and then attempts to dete
t deviations fromthe normal model in observed data. Anomaly dete
tion algorithms have the advantage that they 
an dete
tnew types of intrusions, be
ause these new intrusions, by assumption, will deviate from normal networkusage [5, 13℄. Traditional anomaly dete
tion algorithms require a set of purely normal data from whi
h theytrain their model. If the data 
ontains some intrusions buried within the training data, the algorithm maynot dete
t future instan
es of these atta
ks be
ause it will assume that they are normal.However, more often than not, we do not have either labeled or purely normal data readily available.Generally, we must deal with very large volumes of network data, and thus it is diÆ
ult and tiresome to
lassify it manually. We 
an obtain labeled data by simulating intrusions, but then we would be limited tothe set of known atta
ks that we were able to simulate and new types of atta
ks o

urring in the future willnot be re
e
ted in the training data. Even with manual 
lassi�
ation, we are still limited to identifying onlythe known (at 
lassi�
ation time) types of atta
ks, thus restri
ting our dete
tion system to identifying onlythose types. Generating purely normal data is also very diÆ
ult in pra
ti
e. If we 
olle
t raw data from anetwork environment, it is very hard to guarantee that there are no atta
ks during the time we are 
olle
tingthe data.In this paper, we present a new type of intrusion dete
tion algorithm, unsupervised anomaly dete
tion(also known as anomaly dete
tion over noisy data [6℄), to address these problems. This algorithm takes asinputs a set of unlabeled data and attempts to �nd intrusions buried within the data. After these intrusionsare dete
ted, we 
an apply train a misuse dete
tion algorithm or a traditional anomaly dete
tion algorithmover the data.Unsupervised anomaly dete
tion algorithms make two assumptions about the data whi
h motivate thegeneral approa
h. The �rst assumption is that the number of normal instan
es vastly outnumbers the numberof intrusions. The se
ond assumption is that the intrusions themselves are qualitatively di�erent from thenormal instan
es. The basi
 idea is that sin
e the intrusions are both di�erent from normal and rare, theywill appear as outliers in the data whi
h 
an be dete
ted. Despite these inherent limitations, unsupervisedanomaly dete
tion algorithms have the major advantage of being able to pro
ess unlabeled data and dete
tsome of the intrusions. In addition, these types of algorithms are useful for semi-automated dete
tion inhelping analysts fo
us on suspi
ious instan
es.A previous approa
h to unsupervised anomaly dete
tion involves building probabilisti
 models from thetraining data and then using them to determine whether a given network data instan
e is an anomaly or not[6℄. In that approa
h, the data was modeled using a probabilisti
 model that was known to perform well forthat kind of data. In our 
urrent work, we drop the requirement of a probabilisti
 model and instead useinter-point distan
es to motivate our algorithm.The approa
h we used and des
ribe below, 
lusters the data instan
es together into 
lusters using asimple distan
e-based metri
. This 
lustering is performed on unlabeled data, requiring only feature ve
torswithout labels to be presented. On
e the data is 
lustered, we label as anomalies all of the instan
es thatappear in small 
lusters. The reason that this method works 
an be explained using the assumptions thatwe made about the data for unsupervised anomaly dete
tion. Under the �rst assumption, the number ofnormal instan
es vastly outnumber the number of intrusion instan
es. This implies that the normal instan
esshould form large 
lusters 
ompared to the intrusions. Under the se
ond assumption, sin
e the intrusionsand normal instan
es are qualitatively di�erent, they will not fall into the same 
lusters.Unsupervised anomaly dete
tion algorithms are limited to being able to dete
t atta
ks only when theassumptions hold over that data whi
h is not always the 
ase. For example, these algorithms will not be able2
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to dete
t the mali
ious intent of someone who is authorized to use the network and who uses it in a seeminglylegitimate way. The reason is that this intrusion is not qualitatively di�erent from normal instan
es of theuser. Our algorithm may 
luster these instan
es together and the intrusion would be undete
table. Anotherexample is that the algorithm will have a diÆ
ulty dete
ting a syn-
ood DoS atta
k. The reason is thatoften under su
h an atta
k there are so many instan
es of the intrusion that it o

urs in a similar number tonormal instan
es. Our algorithm may not label these instan
es as an atta
k be
ause the size of the 
lustermay be as large as typi
al 
lusters of normal instan
es.We evaluated our 
luster-based unsupervised anomaly dete
tion method over real network data. Both thetraining and testing was done using (di�erent subsets of) KDD CUP 99 data [14℄, whi
h is a very popularand widely used intrusion atta
k dataset. Various 
ombinations of subsets of this dataset were used fortraining and testing, using standard 
ross validation te
hniques, ea
h 
ombination yielding slightly di�erentresults. On average, the dete
tion rate was around 40%-55% with a 1.3%-2.3% false positive rate. Giventhe advantages of our method over traditional approa
hes, that the data was unlabeled, and our methoduses almost no domain knowledge about se
urity, these results indi
ate that this approa
h to unsupervisedanomaly dete
tion is promising.1.1 Related workClustering is a well known and studied problem. It has been studied in many �elds in
luding statisti
s [24℄,ma
hine learning [23℄, databases [11℄, and visualization. Basi
 methods for 
lustering in
lude the Linkagebased [3℄ and K-means [8℄ te
hniques. K-means makes several passes through the training data and on ea
hpass shifts 
luster 
enters to the mean of the data points assigned to that 
luster. It then re-assigns datapoints to the nearest prototype, and 
ontinues iterating in this manner until no signi�
ant 
hanges in 
luster
enter positions o

ur. The K-means method generally produ
es a more a

urate 
lustering than linkagebased methods, but it has a greater time 
omplexity and this be
omes an extremely important fa
tor innetwork intrusion dete
tion due to very large dataset sizes. Although some optimizations of K-means forvery large datasets exist , they still do not perform suÆ
iently fast for datasets with high dimensionality.Some other te
hniques for 
lustering in
lude Clarans [20℄, Bir
h[26℄, density based methods su
h as Dbs
an[7℄, and AI methods like Self-Organizing Maps [23℄and Growing Networks [1℄.Anomaly dete
tion is a widely used method in the �eld of 
omputer se
urity, and there are approa
hesthat utilize it for dete
ting intrusions [5℄. Various te
hniques for modeling anomalous and normal datahave been developed for intrusion dete
tion. A survey of these te
hniques is given in [25℄. An approa
hfor modeling normal sequen
es using look ahead pairs and 
ontiguous sequen
es is presented in [12℄, anda statisti
al method to determine sequen
es whi
h o

ur more frequently in intrusion data as opposed tonormal data is presented in [10℄. One approa
h use a predi
tion model obtained by training de
ision treesover normal data [18℄, while another one uses neural networks to obtain the model [9℄. Lane and Brodley[17℄ evaluated unlabeled data for anomaly dete
tion by looking at user pro�les and 
omparing the a
tivityduring an intrusion to the a
tivity during normal use. A te
hnique developed at SRI in the Emerald system[13℄ uses histori
al re
ords as its normal training data. It then 
ompares distributions of new data to thedistributions obtained from those histori
al re
ords and di�eren
es between the distributions indi
ate anintrusion. The problem with this approa
h, however, is that if the histori
al distributions 
ontain intrusions,the system may not be able to dete
t similar intrusions in the new instan
es.Another algorithm for unsupervised anomaly dete
tion is presented in [6℄. In this algorithm, a mixturemodel for explaining the presen
e of anomalies is presented, and ma
hine learning te
hniques are used toestimate the probability distributions of the mixture to dete
t the anomalies. There is re
ent work in distan
ebased outliers that is similar to our approa
h [15, 16, 4℄. These approa
hes examine inter-point distan
esbetween instan
es in the data to determine whi
h points are outliers. A di�eren
e between these approa
hesand the problem of unsupervised anomaly dete
tion is that the nature of the outliers are di�erent. Often innetwork data, the same intrusion o

urs multiple times whi
h means there are many similar instan
es in the3
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data. However, the number of instan
es of this intrusion is signi�
antly smaller than the typi
al 
luster ofnormal instan
es.A problem related to anomaly dete
tion is the study of outliers in the �eld of statisti
s. Various te
hniqueshave been developed for dete
ting outliers in univariate, multivariate and stru
tured data, using a givenprobability distribution. A survey of outliers in statisti
s is given by [2℄.2 MethodologyIn this se
tion we des
ribe the dataset and how it is used to build 
lusters and dete
t intrusions. We �rstexamine what type of data was present in the dataset, what features were extra
ted, and what intrusiontypes were represented. Then, we dis
uss how the data was normalized based on the standard deviationof the training set, so that the system would be able to 
reate 
lusters with data 
oming from di�erentdistributions. A des
ription of the metri
 and the 
lustering algorithm follows, and �nally the methods forlabeling 
lusters and 
lassifying unseen instan
es are dis
ussed.2.1 Dataset Des
riptionThe dataset used was the KDD Cup 1999 Data [14℄, whi
h 
ontained a wide variety of intrusions simulatedin a military network environment. It 
onsisted of approximately 4,900,000 data instan
es, ea
h of whi
h isa ve
tor of extra
ted feature values from a 
onne
tion re
ord obtained from the raw network data gatheredduring the simulated intrusions. A 
onne
tion is a sequen
e of TCP pa
kets to and from some IP addresses.The TCP pa
kers were assembled into 
onne
tion re
ords using the Bro program [21℄ modi�ed for use withMADAM/ID [19℄. Ea
h 
onne
tion was labeled as either normal or as exa
tly one spe
i�
 kind of atta
k.All labels are assumed to be 
orre
t.The simulated atta
ks fell in one of the following four 
ategories : DOS - Denial of Servi
e (e.g. a syn
ood), R2L - Unauthorized a

ess from a remote ma
hine (e.g. password guessing), U2R - unauthorizeda

ess to superuser or root fun
tions (e.g. a bu�er over
ow atta
k), and Probing - surveillan
e and otherprobing for vulnerabilities (e.g. port s
anning). There were a total of 24 atta
k types.The extra
ted features in
luded the basi
 features of an individual TCP 
onne
tion su
h as its duration,proto
ol type, number of bytes transferred, and the 
ag indi
ating the normal or error status of the 
onne
-tion. Other features of an individual 
onne
tion were obtained using some domain knowledge, and in
ludedthe number of �le 
reation operations, number of failed login attempts, whether root shell was obtained, andothers. Finally, there were a number of features 
omputed using a two-se
ond time window. These in
luded- the number of 
onne
tions to the same host as the 
urrent 
onne
tion within the past two se
onds, per
entof 
onne
tions that have "SYN" and "REJ" errors, and the number of 
onne
tions to the same servi
e as the
urrent 
onne
tion within the past two se
onds. In total, there were 41 features, with most of them takingon 
ontinuous values.2.2 NormalizationSin
e our algorithm is designed to be general, it must be able to 
reate 
lusters given a dataset from anarbitrary distribution. A problem with typi
al data is that di�erent features are on di�erent s
ales. This
auses bias toward some features over other features.As an example, 
onsider two 3-feature ve
tors, ea
h set 
oming from di�erent distributions : f(1; 3000; 2); (1; 4000; 3)g.Under an Eu
lidean metri
, the squared distan
e between feature ve
tors will be (1� 1)2+(3000� 4000)2+(2� 3)2 whi
h is dominated by the se
ond 
olumn.To solve this problem, we 
onvert the data instan
es to a standard form based on the training dataset'sdistribution. That is, we make the assumption that the training dataset a

urately re
e
ts the range and4
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deviation of feature values of the entire distribution. Then, we 
an normalize all data instan
es to a �xedrange of our 
hoosing, and hard 
ode the 
luster width based on this �xed range.Given a training dataset, the average and standard deviation feature ve
tors are 
al
ulated :avg ve
tor[j℄ = 1N NXi=1 instan
ei[j℄std ve
tor[j℄ = ( 1N � 1 NXi=1(instan
ei[j℄� avg ve
tor[j℄)2)1=2where ve
tor[j℄ is the jth element (feature) of the ve
tor.Then ea
h instan
e (feature ve
tor) in the training set is 
onverted as follows :new instan
e[j℄ = instan
e[j℄� avg ve
tor[j℄std ve
tor[j℄In other words, for every feature value we 
al
ulate how many standard deviations it is away from theaverage, and that result be
omes the new value for that feature. Only 
ontinuous features were 
onverted;symboli
 ones were preserved as they were.In e�e
t this is a transformation of an instan
e from its own spa
e to our standardized spa
e, based onstatisti
al information retrieved from the training set.2.3 Metri
One of the main assumptions made was that data instan
es having the same label will tend to be 
losertogether than instan
es with di�erent labels under some metri
. Therefore, �nding or 
onstru
ting anappropriate metri
 is 
riti
al to the performan
e of the method.The parti
ular 
hoi
e of metri
 is likely to be di
tated by the domain. In dete
ting network intrusions,it seemed at �rst that some features of the data instan
es would be important (have greater weight) thanothers, and thus di�eren
es in the values of those features should have a greater 
ontribution to the overalldistan
e. Therefore, we experimented with several weighted metri
s, with higher weights assigned to di�erentsubsets of features.However, in the end we used a standard Eu
lidean metri
, with equally weighted features. One reasonfor this was that while the weighted metri
 did show some in
rease in performan
e, it was not a signi�
antamount. But more importantly, tuning the metri
's parameters to a
hieve maximum performan
e for aparti
ular domain, data distribution, and feature set would undermine the system's generality and would
ontribute to over �tting.Some features took on dis
rete values, and so there was an issue of how to fa
tor them into the metri
.The metri
 we used added a 
onstant value to the squared distan
e between two instan
es for every dis
retefeature where they had two distin
t values. This is equivalent to treating ea
h di�erent value as beingorthologous in the feature spa
e.2.4 ClusteringTo 
reate 
lusters from the input data instan
es, we used a simple variant of single-linkage 
lustering.Although this is not the most e�e
tive 
lustering algorithm, it has the advantage of working in near lineartime. The algorithm starts with an empty set of 
lusters, and generates the 
lusters with a single passthrough the dataset. For ea
h new data instan
e retrieved from the normalized training set, it 
omputesthe distan
e between it and ea
h of the 
entroids of the 
lusters in the 
luster set so far. The 
luster withthe shortest distan
e is sele
ted, and if that distan
e is less than some 
onstant W (
luster width) then the5
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instan
e is assigned to that 
luster. Otherwise, a new 
luster is 
reated with the instan
e as its 
enter. Moreformally, the algorithm pro
eeds as follows :Assume we have �xed a metri
 M, and a 
onstant 
luster width W. Let dist(C; d) where C is a 
lusterand d is an instan
e, be the distan
e under the metri
 M , between C's de�ning instan
e and d. The de�ninginstan
e of a 
luster is the feature ve
tor that de�nes the 
enter (in feature spa
e) of that 
luster. We referto this de�ning instan
e as the 
entroid.1. Initialize the set of 
lusters, S, to the empty set.2. Obtain a data instan
e (feature ve
tor) d from the training set. If S is empty, then 
reate a 
lusterwith d as the de�ning instan
e, and add it to S. Otherwise, �nd the 
luster in S that is 
losest to thisinstan
e. In other words, �nd a 
luster C in S, su
h that for all C1 in S, dist(C; d) <= dist(C1; d).3. If dist(C; d) <=W , then asso
iate d with the 
luster C. Otherwise, d is more than W away from any
luster in S, and so a new 
luster must be 
reated for it : S  S [ fCng where Cn is a 
luster withd as its de�ning instan
e.4. Repeat steps 2 and 3, until no instan
es are left in the training set.2.5 Labeling 
lustersOur hope is that under our metri
, instan
es with the same 
lassi�
ation are 
lose together and those withdi�erent 
lassi�
ations are far apart. If an appropriate 
luster width W was 
hosen, then after 
lusteringwe obtain a set of 
lusters with instan
es of a single type in ea
h of them. This 
orresponds to our se
ondassumption about the data that the normal and intrusion instan
es are qualitatively di�erent.Sin
e we are dealing with unlabeled data, we do not have a

ess to labels during training. Therefore,it is ne
essary to �nd some other way to determine whi
h 
lusters 
ontain normal instan
es and whi
h
ontain atta
ks (anomalies). Our �rst assumption about the data is that normal instan
es 
onstitute anoverwhelmingly large portion (> 98%) of the training dataset. Under this assumption it is highly probablethat 
lusters 
ontaining normal data will have a mu
h larger number of instan
es asso
iated with themthen would 
lusters 
ontaining anomalies. We therefore label some per
entage N of the 
lusters 
ontainingthe largest number of instan
es asso
iated with them as 'normal'. The rest of the 
lusters are labeled as'anomalous' and are 
onsidered to 
ontain atta
ks.A problem may arise with this approa
h, however, depending on how many sub-types of normal instan
esthere are in the training set. For example, there may be many di�erent kinds of normal network a
tivity,su
h as using di�erent proto
ols - ftp, telnet, www, et
. Ea
h of these uses might have its own distin
t pointin feature spa
e where network data instan
es for that use will tend to 
luster around. This, in turn, mightprodu
e a large number of su
h 'normal' 
lusters, one for ea
h type of normal use of the network. Ea
hof these 
lusters will then have a relatively small number of instan
es asso
iated with it - less than some
lusters 
ontaining atta
k instan
es. Then these normal 
lusters will be in
orre
tly labeled as anomalous.To prevent this problem, we need to insure that the per
entage of normal instan
es in the training set isindeed extremely large in relation to atta
ks. Then, it is very likely that ea
h type of normal network usewill have adequate (and larger) representation than ea
h type or sub-type of atta
k.2.6 Dete
tionOn
e the 
lusters are 
reated from a training set, the system is ready to perform dete
tion of intrusions.Given an instan
e d, 
lassi�
ation pro
eeds as follows :1. Convert d based on the statisti
al information of the training set from whi
h the 
lusters were 
reated.Let d0 be the instan
e after 
onversion. 6
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2. Find a 
luster whi
h is 
losest to d0 under the metri
 M (i.e. a 
luster C in the 
luster set, su
h thatfor all C 0 in S, dist(C; d0) <= dist(C 0; d0).3. Classify d0 a

ording to the label of C (either normal or anomalous).In other words, we simply �nd the 
luster that is 
losest to d (
onverted) and give it that 
luster's
lassi�
ation.3 System evaluation and results3.1 Performan
e measuresTo evaluate our system we were interested in two major indi
ators of performan
e : the dete
tion rate andthe false positive rate. The dete
tion rate is de�ned as the number of intrusion instan
es dete
ted by thesystem divided by the total number of intrusion instan
es present in the test set. The false positive rate isde�ned as the total number of normal instan
es that were (in
orre
tly) 
lassi�ed as intrusions divided bythe total number of normal instan
es. These are good indi
ators of performan
e, sin
e they measure whatper
entage of intrusions the system is able to dete
t and how many in
orre
t 
lassi�
ations it makes in thepro
ess. We 
al
ulate these values over the labeled data to measure performan
e.3.2 Filtering the training datasetThe KDD dataset was obtained by simulating a large number of di�erent types of atta
ks, with normala
tivity in the ba
kground. The goal was to produ
e a good training set for learning methods that uselabeled data. As a result, the proportion of atta
k instan
es to normal ones in the KDD training dataset isvery large as 
ompared to data that we would expe
t to observe in pra
ti
e.Our se
ond major assumption, however, states that the training set should represent normal networka
tivity, where atta
ks are very rare and most of the data represents normal operation. Therefore, the rawKDD dataset obviously does not satisfy this 
ondition. We trained the system with this raw set and obtainedvery poor performan
e, as was to be expe
ted. To meet the requirement, we generated training sets fromKDD data by �ltering it for atta
ks. It was �ltered su
h that the resulting training set 
onsisted of 1 to1.5% atta
k and 98.5 to 99% normal instan
es.3.3 Parameter EstimationThere were two main parameters whose values needed to be �xed before performan
e 
ould be measured.The �rst one is the 
luster width for doing 
lustering, whi
h determines how 
lose two instan
es have to beto be assigned to the same 
luster. The se
ond is the per
entage of the largest 
lusters N that would belabeled 'normal' during the dete
tion phase. The goal was to set values for these two variables su
h that theperforman
e over the entire domain would be maximized.In this se
tion we report results over the same dataset to give intuitions of how the dynami
s of theparameters behave. In the following se
tion we present results of testing over separate data sets to give amore a

urate measure of the performan
e. We used a single subset (around 10%) of the KDD data to runa series of tests with di�erent values for these two variables, measuring the resulting performan
e. A hazardis that the training set might represent a narrow spe
trum of the domain and we might over �t the valuesof the two variables to that spe
trum. However, the subset that we 
hose was representative of the entireKDD dataset, as it 
ontained many instan
es of ea
h type of atta
k.On
e we found the values for 
luster width and the N that maximized results for that set, those valueswere �xed for all the subsequent experiments over di�erent datasets. The two parameters are set to 
omparethe best values over this type of data. Cluster width is a measure indi
ating the average radius in feature7



www.manaraa.com

Width N Dete
tion rate False positive rate20 15% 35.7% 1.44%20 7% 66.2% 2.7%20 2% 88.% 8.14%Table 1: These are the results of some tests to obtain the value of N (per
entage of largest 
lusters to labelas normal during dete
tion). The 
luster width was �xed for these tests.Width N Dete
tion rate False positive rate30 15% 28.1% 1.07%40 15% 30.77% 0.84%60 15% 31.9.% 0.7%80 15% 22.84% 0.6%Table 2: These are the results of some tests to obtain the value of the 
luster width variable. Cluster widthof 40 was 
hosen for subsequent tests.spa
e of a 
luster 
ontaining instan
es of the same type. This is a parti
ular property of the domain -network 
onne
tion re
ords. The N is also a property of the network - it attempts to measure the ratio ofthe number of sub-types of normal instan
es to the total number of di�erent sub-types.When �xing the values of the 
luster width and per
entage of largest 
lusters variables, and measuringperforman
e on the single training/test set, the results are shown in Table 3.3.We de
ided to use 15% as the value for N in subsequent tests, sin
e it produ
ed an a

eptable falsepositive rate, without sa
ri�
ing too mu
h dete
tion rate. To �nd the value for 
luster width we 
ondu
tedseveral tests on the same training/test set 
ombination, and with a �xed value for N The results of some ofthese tests are shown in Table 2.Cluster width of 40 was 
hosen even though width=60 produ
ed a slightly higher dete
tion rate and afalse positive rate. The di�eren
e was minor however, and tests on di�erent datasets indi
ated that withwidth=60 performan
e was worse than with width=40.Figure 1 shows an ROC (Re
eiver Operating Chara
teristi
) [22℄ 
urve depi
ting the relationship betweenfalse positive and dete
tion rates for one �xed training/test set 
ombination. ROC 
urves are a way ofvisualizing the trade-o�s between dete
tion and false positive rates.

Figure 1. The ROC 
urve of false positive vs. dete
tion rate, for a �xed training and test set 
ombination.
8
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3.4 Cross validation testingFinally, after all parameters were spe
i�ed, we evaluated the system by using a variant of the 
ross validationmethod. Cross validation is the standard te
hnique used to obtain an estimation of a method's performan
eover unseen data.We partitioned the entire KDD dataset into ten subsets, ea
h 
ontaining approximately490,000 instan
es or 10% of the data. Unfortunately, the distribution of the atta
ks in the KDD dataset isvery uneven whi
h made 
ross validation very diÆ
ult. Many of these subsets 
ontained instan
es of only asingle type. For example, the 4th, 5th, 6th, and 7th 10% portions of the full dataset 
ontained only SMURFatta
ks, and the data instan
es in the 8th were almost entirely NEPTUNE intrusions. Sin
e we require thatall intrusion (and normal) sub-types should be represented at least to some degree in the training dataset,we did not use these subsets be
ause they failed to meet this requirement. For 
ross validation training onlyfour of the ten subsets were sele
ted. These four subsets 
ontained a good mix of various intrusion types,and 
onformed to our ne
essary assumptions about the data. They were likely to produ
e a 
lustering thatwould be representative of many intrusions.Ea
h of these four subsets was then sele
ted, and �ltered su
h that the intrusion would 
onstitute 1%of the resulting dataset. The system was trained on this �ltered data, and the 
luster set that resulted wassaved. We then evaluated system performan
e of this 
luster set over ea
h of these four subsets, this timeused as test sets. This pro
ess was repeated several times, with a di�erent subset sele
ted for training ea
htime. The results are shown in Table 3.5.The test sets were also �ltered to 
ontain approximately equal number of instan
es of ea
h type ofatta
k. This was ne
essary in order to have a meaningful measure of performan
e, sin
e for example if 80%of intrusions in the test set were of a single type, then a dete
tion rate of 81% would indi
ate that the systemis well suited for dete
ting only this parti
ular type of atta
k. If, however, the test sets 
ontain an equalper
entage of di�erent types of instan
es, then an 81% dete
tion rate would show the system as 
apable ofdete
ting several di�erent types of intrusions.3.5 Variations to 
lustering and dete
tionIn addition to the experiments with the 
luster width and the 
onstant indi
ating the per
ent of largest
lusters to be labeled normal, we explored some variations to the 
lustering and dete
tion methods, and theevaluated the performan
e over the single training and test sets.The 
lustering method was altered by allowing multiple (two in the version we used) passes for the
reation and assignment of instan
es to 
lusters. Previously, only one pass was made, during whi
h for everyinstan
e a 
luster nearest to it was found in the set of 
urrently existing 
lusters, and the instan
e wasassigned to that 
luster if it was less than 
luster width away (under the metri
). If it was farther away, anew 
luster was 
reated for that instan
e. In this s
heme the instan
es whi
h appeared earlier in the trainingdataset had a smaller set of existing 
lusters to 
ompare distan
e to. It was thought that this might havepossibly resulted in a non-optimal assignment of an instan
e to a 
luster, in the sense that if it was 
losestto some type or sub-type of instan
es and the 
luster representing them was not yet present in the set, itwould have been assigned (if it was within 
luster width) to the 
losest 
luster that was in the set at the timethat instan
e was 
onsidered. That 
luster would be a non-optimal 
hoi
e, as it might represent a di�erenttype or sub-type than that of the instan
e whi
h was assigned to it. To prevent this from o

urring, weimplemented a double pass method where we would �rst only 
reate the 
lusters without assigning instan
esto them, and then during a se
ond pass through the training set assign instan
es based on the 
losest 
lusterin this 
omplete set.The performan
e of the system with this 
hange is shown in Table 3.5. Another variation was 
hangingthe 
lustering method. The performan
e obtained from 
hanging the 
lustering method to use two passeswas the same or worse than the performan
e of 
lustering with one pass.The se
ond variation was applied to the dete
tion method, where instead of 
hoosing the 
losest 
lusterto the presented instan
e and assigning it that 
luster's 
lassi�
ation (either normal or anomalous), we 
hose9
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Training set Test set Dete
tion rate False positive rateP10 P1 55.7% .99%P10 P2 51.04% 1.58%P10 P3 53.01% 1.67%P10 P10 53.39% 1.04%P2 P1 46.3% .46%P2 P2 22.0% .70%P2 P3 29.3% 2.35%P2 P10 23.0% 9.83%P1 P1 28.3% 4.5%P1 P2 50.5% 1.26%P1 P3 38.5% 3.45%P1 P10 50.4% 11.37%P3 P1 56.25% .3%P3 P2 18.56% .6%P3 P3 18.75% .74%P3 P10 23.0% 1.31%Table 3: Performan
e of the system under various training and test set 
ombinations. P1, P2, P3, andP10 represent the �rst, se
ond, third, and the tenth 10% partitions of the 4,000,000 KDD CUP 99 dataset,respe
tively. Cluster width was set to 40, and 20% of largest 
lusters were marked as normal. Both thetraining and test sets were �ltered prior to their use. The training was done over only 10% of the total datasin
e there was enough data in this subset to for good 
lusters.
N Dete
tion rate False positive rate2 28.5% .56%3 51.3% 1.21%4 47.2% .93%5 53.3% 1.61%6 50.9% 1.36%7 65.7% 1.78%Table 4: Results for the labeling by majority variation to the dete
tion method.

10
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N 
losest 
lusters to that instan
e and assigned it the majority's 
lassi�
ation (i.e. if a larger number ofthose N 
lusters were labeled anomalous then the instan
e was 
lassi�ed 
orrespondingly, and as normalotherwise).After experimenting with these 
hanges and evaluating their performan
e on a test set as des
ribedbelow, we 
on
luded that they did not improve dete
tion a

ura
y and in some 
ases de
reased the dete
tiona

ura
y.4 AnalysisThe results from 
ross validation show that performan
e of our system depends heavily on whi
h trainingset was used. In fa
t, it depends on how well the training set meets the requirement of representing a widevariety of intrusion and normal sub-types. As Table 4 shows, training on sets P2 or P1 resulted in a veryhigh false positive rate 
ompared to the other sets. A 
loser examination of those datasets revealed thatthey 
ontained a smaller number of di�erent normal sub-types than the other two sets. This resulted in thefailure to 
reate 
lusters for many normal regions of the feature spa
e, and therefore data instan
es fromthose regions were assigned to in
orre
t 
lusters, possibly to those marked as anomalous. This may have
aused the high false positive rate.The training set P10 showed the best performan
e a
ross all four of the test sets, with a high dete
tionand a low false positive rate. When training on P10 and testing on the P3 sets, 53.01% dete
tion and 1.67%false positive rates were obtained. On the other hand, when we reversed the situation by training on P3 andtesting on P10, only a 23% dete
tion rate was obtained (with a similar false positive rate). This 
an againbe explained by the fa
t that in the P10 dataset more di�erent types of intrusions were represented than inthe P3 set, and therefore training on P10 resulted in a better 
luster set than training on P3, whi
h in turnmanifested itself in the in
reased dete
tion rate.In an a
tual appli
ation of the system, the expe
ted performan
e greatly depends on the 
omposition ofthe data as shown with the variability of the dete
tion rate over the di�erent subsets. However, in all ofthese datasets, we have a signi�
ant dete
tion rate with a low false positive whi
h suggests that the methodwill be able to dete
t some of the atta
ks su

essfully.4.1 Dete
tion vs. false positive ratesThe trade-o� between the false positive and dete
tion rates is inherently present in many ma
hine learningmethods. By 
omparing these quantities against ea
h other we 
an evaluate the performan
e invariant ofthe bias in the distribution of labels in the data. This is espe
ially important in intrusion dete
tion problemsbe
ause the normal data outnumbers the intrusion data by a fa
tor of 100 : 1. The 
lassi
al a

ura
y measureis misleading be
ause a system that always 
lassi�es all data as normal would have a 99% a

ura
y.In our system, the false positive vs. dete
tion rate trade-o� was very apparent. As the per
ent of largest
lusters to be labeled normal was de
reased, dete
tion rate in
reased substantially sin
e a larger number of
lusters were now labeled anomalous. The intrusion instan
es whi
h were assigned to those 
lusters but werepreviously 
lassi�ed as normal (be
ause those 
lusters were labeled normal), now were 
lassi�ed 
orre
tly asintrusions. However, at the same time the false positive rate also in
reased be
ause all the normal instan
esassigned to 
lusters that were previously labeled normal and that now were labeled anomalous, were 
lassi�edas intrusions as well. If those 
lusters indeed represented anomalous regions in the feature spa
e, then thosenormal instan
es were assigned to them in
orre
tly, perhaps due to an sub-optimal metri
 or be
ause theassumption that instan
es of the same type or sub-type will 
luster together was not satis�ed. However,the negative e�e
t of this mis-assignment on performan
e 
ould have been avoided if the per
ent of largest
lusters to be labeled normal was not de
reased.To su

essfully utilize the system, then, a suitable value for that per
entage must be found, one that wouldyield a high dete
tion rate while keeping the false positive rate within a tolerable low value. If we assume11
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that no mis-assignment of instan
es to 
lusters o

urs, then this essentially amounts to measuring a propertyof the domain - the ratio of the number of sub-types of normal instan
es to the total number of di�erentsub-types. This ratio will be re
e
ted in the number of 
lusters representing normal regions of the featurespa
e relative to the number of 
lusters representing all regions. In reality, when our assumptions are notmet and mis-assignment o

ur, that ratio 
an be estimated indire
tly, by noting the value for the per
entageof largest 
lusters to be labeled normal whi
h makes the false positive and dete
tion rate 
ombination mostfavorable. For example, we 
ould 
hoose a value whi
h minimizes their sum (possibly weighted).4.2 Variations to the AlgorithmsIt was 
on
luded that the 
hanges made to the 
lustering algorithm and to the dete
tion method did notin
rease performan
e for several reasons. Changing the dete
tion method to perform 
lassi�
ation based onthe majority of k nearest 
lusters' labels showed improved results for the single training and test set thatwere used to measure performan
e. The dete
tion rate was generally higher for values of k > 1 than when kwas equal to 1, while still keeping the false positive rate relatively low. However, the results varied greatlywith k, with no apparent pattern as k in
reased. This lead us to suspe
t that the value of k whi
h produ
edthe best results was related to the parti
ular training/test set that was used, and that it did not represent avalue that in
reased performan
e over the entire domain. In other words, the number (k) of nearest 
lustersto be 
onsidered that yielded the best results, was in reality dependent on the training/test set 
ombinationand the portion of the domain it represented. Using this value for training on di�erent sets might givedi�erent, less favorable, results. This suspi
ion of over �tting to the single training/test set was 
on�rmedwhen we tested the labeling by majority method on other training and test set 
ombinations. Results forthose tests indi
ated that the method did not improve, and in some 
ases lowered, the performan
e.The idea of 
hanging 
lustering to use the double pass method was dis
arded immediately, after theresults with that variation used were obtained. They showed that dete
tion rate was about the same withfalse positive rate remaining the same or even slightly higher when using the double pass method thanwithout using it. One possible explanation for the in
reased false positive rate is that with the double passmethod less instan
es were being assigned to ea
h 
luster on average (be
ause instan
es were now moreevenly distributed a
ross 
lusters). This 
ould have led to the inability to di�erentiate between anomalousand normal 
lusters during the dete
tion phase, sin
e due to the more even distribution some truly normal
lusters now had less instan
es assigned to them than previously. Therefore they might have been labeledas anomalous, and this in
reased the false positive rate.5 Con
lusionThe 
ontribution that we presented in this paper was a method for dete
ting intrusions based on featureve
tors 
olle
ted from the network, without being given any information about 
lassi�
ations of these ve
tors.We designed a system that implemented this method, and it was able to dete
t a large number of intrusionswhile keeping the false positive rate reasonably low. There are two primary advantages of this system oversignature based 
lassi�ers or learning algorithms that require labeled data in their training sets. The �rstis that no manual 
lassi�
ation of training data needs to be done. The se
ond is that we do not have to beaware of new types of intrusions in order for the system to be able to dete
t them. All that is required isthat the data 
onform to several assumptions. The system then will try to automati
ally determine whi
hdata instan
es fall into the normal 
lass and whi
h ones are intrusions.Even though the dete
tion rate of the system we implemented is not as high as of those using algorithmsrelying on labeled data, our system is still very useful. Sin
e no prior 
lassi�
ation is required on the trainingdata, and no knowledge is needed about new atta
ks, we 
an automate the pro
ess of training and 
reatingnew 
luster sets. In pra
ti
e, this would mean periodi
ally (every 2 weeks for example) 
olle
ting raw datafrom the network, extra
ting feature values from it, and training on the resulting set of feature ve
tors. This12
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will help dete
t new and yet unknown atta
ks. In addition, the method 
an be used for semi-automateddete
tion by helping analysts fo
us on portions of the data that are more likely to 
ontain intrusions.5.1 Future workFuture work involves possible extensions or modi�
ations to our method to a
hieve better performan
e and abetter degree of automation. Currently, during dete
tion 
lusters are labeled as either anomalous or normala

ording to the relative number of instan
es they 
ontain. Another possibility would be to label 
lusterswhi
h are outliers in the feature spa
e as anomalous, and all others as normal. This involves making theassumption that normal data of di�erent sub-types will be 
lustered together, while sub-types of intrusiondata will not be near the normal region of feature spa
e.To a
hieve a greater degree of automation, we 
an also determine the value for the per
entage of largest
lusters labeled normal N variable automati
ally, perhaps based on the standard deviation and averagevalues of the number of instan
es in 
lusters. In that s
heme, 
lusters 
ontaining only a 'small' (some �xedstandard deviations lower than the mean) number of instan
es will be labeled anomalous. The advantageto this method is that in the 
urrent system as more new and unknown atta
ks are introdu
ed into thenetwork environment, the ratio of the number of normal sub-types to the total number of sub-types willde
rease. Having a �xed value for N whi
h does not re
e
t the de
reased ratio will therefore 
ause thealgorithm to label more 
lusters as normal, some of whi
h should have really been labeled as anomalous.As a result, dete
tion rate will de
rease as more new intrusion types are introdu
ed, and therefore periodi
manual updates of the value for N will be required. If the system determines the value for N automati
ally,however, then no manual intervention will be required even over long periods of time.Referen
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